
1.5 The boxplots (or Box and Whisker plots) shown below summarize two data sets, Land II. Based on the boxplots, which of the following statements about these two data sets <u>CANNOT</u> be justified?

- a. The range of data set I is equal to the range of data set II.
- b. The interquartile range of data settlis equal to the interquartile range of data set il.
- Data set I and data set II have the same number of data points.
- d. About 75% of the values in data set I are greater than or equal to about 50% of the values in data set I

Answer: reduction to the absurd (εις άτοπον επαγωγή)

- a. Yes 20 60
- b. Yes, Data I: 45-30 = 15 and Data II: 50-35 = 15
- d. Yes Data II $Q_1=35$ (smaller than 75%) is equal to Data I, $Q_2=Me$ dian (larger than 50%)
- c. Not enough information
- 1.8 Future parents are wondering how many boys they might get if they have three children. A probability model is developed with _______possible outcomes.

Let s denote B = {boy} and G={ girl}. Having 3 children produces 8 possible outcomes

BBB, GBB, BGB, BBG, GGG, GGG

Now, let s denote X= the discrete variable that counts the number of Boys then

B	0	1	2	3	
Probabi <mark>lit</mark> y	1/8	(G G) 3/8	3/8	1/	<mark>/8</mark>

1.9 Let $X_1,...,X_{16}$ be a random sample from a Normal distribution with mean 5 and variance 48. What is the distribution of the sample mean \overline{X} ?

The distribution is exactly Normal, cause the random sample was selected from a Normal distribution. If it was not, by using the central limit theory within a large sample selected, it would be approximately Normal.

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 so $mean = 5$ $variance = \frac{48}{16} = 3$

- 1.20 You have estimated the model Y=1.8*X\((-1.35)\). If X changes by 10% which of the following statements is true?
 - a. Y changes by 1.35%
 - b. Y changes by -13.5%
 - c. Y changes by +13.5%
 - d. Y changes by -1.35%

Constant elasticity model so -1,35 is the elasticity which means if X changes by 1% then Y changes by -1,35%. By using linear interpolation (γραμμική παρεμβολή – μέθοδο των τριών) if X changes by 10% then Y changes by -13,5%.

email: info@didaskaleio.gr

Question 2

The leader of a small political party which participates in the elections wonders if his party will win more than 3% of votes, which is the minimum to win seats in parliament. The last poll based on a sample size of 2,500 voters, gave an estimation of 3.2%. The leader of the party wonders if this percentage is significantly higher than 3%.

- 2.1 State the null hypothesis (H₀) and the alternative hypothesis (H₁)
- **2.2** Test the hypothesis at $\alpha = 5\%$.
- 2.3 Set up a 95% confidence interval of the party's percentage.
- 2.4 Given that the total number of voters is 9,000,000 and one third does not participate in elections, set up a 95% confidence interval of the number of voter's who are expected to vote for the party.
- 2.5 What will be your recommendation to the party leader?

Note:
$$s_p = \sqrt{\frac{p \cdot (1-p)}{n}} = 0.0035$$
, $Z = (p - \pi_0)/s_p = +0.571$, $|Z_{0.10/2}| \approx 1.65$, $|Z_{0.05/2}| \approx 2.00$

Answer: Point estimation : $\hat{R} \neq 0.032$ or 3,2%

2.1.

 H_0 : $\pi = 0.03$

 $H_1: \pi > 0.03$

The leader of the party wonders if this percentage is significantly higher than 3%.)

2.2 Hypothesis testing

$$z = \frac{0.032 + 0.03}{\sqrt{\frac{0.032(1 - 0.032)}{2.500}}} = \frac{0.002}{3.52 \cdot 10^{-3}} = \frac{0.002}{0.00352} \neq 0.568$$

$$so, |z| = 0.568$$

• Ho is rejected if $|z| > z_a = z_{0.05} = 1,65$

While $|z| = 0.568 < z_{0.05} = 1.65$ Ho is not rejected, so the percentage is not significantly higher than 3%.

2.3 : 95% C.I.

$$\begin{array}{c} \left(p - z_{a/2} \cdot S\hat{E}(\hat{p}), \hat{p} + z_{a/2} \cdot S\hat{E}(\hat{p}) \right) \Rightarrow (0.032 - 2 \cdot 0.00352, 0.032 + 2 \cdot 0.00352) \\ \Rightarrow (0.025, 0.039) \end{array}$$

2.4. Number of voters that participate in the elections ?

$$N = 9.000.000 + \frac{1}{3} \cdot 9.000.000 = 6.000.000$$

so 95% C.I:
$$(6.000.000 \cdot 0.025, 6.000.000, 0.039) = (50.000, 23, 4.000)$$

2.5 . The estimated percentage leads to conclusion that is not significantly higher than 3% (at α = 5%). However, it is not certain (like **everything** in statistics. A that the party will enter parliament. But it is likely to achieve it.

ΓΙΑ ΝΑ ΛΑΜΒΑΝΈΤΕ ΕΝΗΜΕΡΩΣΕΙΣ ΑΚΟΛΟΥΘΉΣΤΕ ΜΑΣ ΣΤΟ FACEBOOK

email: info@didaskaleio.gr